主板厂家
免费服务热线

Free service

hotline

010-00000000
主板厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

【消息】wszaof15生活污水处理一体化设备

发布时间:2020-11-17 11:38:30 阅读: 来源:主板厂家

wsz-ao-f-1.5生活污水处理一体化设备

核心提示:wsz-ao-f-1.5生活污水处理一体化设备,鲁盛环保是一家生产和销售一体化污水处理设备,医院污水处理设备,地埋式污水处理设备厂家,提供医院一体化污水处理设备报价信息,质量优质,售后服务周到wsz-ao-f-1.5生活污水处理一体化设备

鲁盛环保是一家生产和销售一体化污水处理设备,医院污水处理设备,地埋式污水处理设备厂家,提供医院一体化污水处理设备报价信息,质量优质,售后服务周到生态调水是在敏感水域普遍采用的水环境污染治理措施。生态调水的目到的和方法是通过水利设施(闸门、泵站等)的调控引入污染水域上游或附近的清洁水源冲刷稀释污染水域,以改善其水环境质量。  生态调水的实际作用主要体现在:  ◆ 将大量污染物在较短时间内输送到下游,减少了原区域水体中的污染物的总量,以降低污染物的浓度;  ◆ 调水时改善了水动力的条件,使水体的复氧量增加,有利于提高水体的自净能力;  ◆ 使死水区和非主流区的污染水得到置换。  生态调水技术据原理属物理法分类技术。通过稀释作用降低营养盐和污染浓度,改善水质,这是生态调水技术主要作用所含有的内容。然而,生态调水技术的物理方法是把污染物转移而非降解,会对流域的下游造成污染,所以,在实施前应进行理论计算预测,确保调水效果和承纳污染的流域下游水体有足够大的环境容量。人工增氧  人工增氧是在治理污染河道中较多采用的措施之一。这是因为污染严重的河道水体由于耗氧量远大于水体的自然复氧量,溶解氧普遍较低,甚至处于严重缺氧状态,此时河道的水质严重恶化,水体自净能力低下,水生态系统遭到破坏。人工增氧能较大幅度地提高水体中溶氧含量。

人工增氧的结果:  ◆ 能加快水体中溶解氧与臭污物质之间发生氧化还原反应的速度;  ◆ 能提高水体中好氧微生物的活性,促进有机污染物的降解速度,这些作用对消除水体臭污具有较好的效果。  人工增氧一般适宜于在以下二种情况下应用:  ◆ 为加快对污染河道治理的进程;  ◆ 作为已经过治理河道中的应急措施。  人工增氧技术据原理属物理法分类技术。促进有机污染物降解,这是人工增氧技术主要作用所含有的内容。在传统污水处理硝化系统中的NOB通常是Nitrobacter和Nitrospira,在应用现代生物分析工具之前,Nitrobacter通常被认为是优势菌种,因此很多设计和优化污水处理厂的关键参数是基于对纯培养基的Nitrobacter而获得数据,而人们对Nitrospira的特性知之甚少。通过对Nitrospira纯培养基的研究,Blackburn报道了两种微生物的不同之处,Nitrospira在低浓度时对亚硝酸盐氮有更高的亲和力,它的亚硝酸盐氮半饱和系数更低,游离氨对其的抑制浓度更低(0.04~0.08 mg/L)。其他的一些研究也显示Nitrobacter对基质的亲和力低、在基质浓度高的环境中易于存在;而Nitrospira对基质的亲和力高、在基质浓度低的环境中易于存在。这些研究结果显示,在低氨氮、低亚硝酸盐氮浓度的情况下,Nitrospira更易于控制亚硝酸盐氮的氧化。在主流工艺中,由于Nitrospira较低的半饱和系数,低浓度的环境为其提供了生长的优势,而又能避免游离氨和游离亚硝酸的抑制。美国DC Water(哥伦比亚特区供水与污水管理局)、美国HRSD(汉普顿路卫生管理局)及Strass污水处理厂的数据都倾向于支持这种理论。HRSD的中试结果还显示Nitrospira可能是NOB的优势菌种,这样在主流工艺中抑制其生长就更为困难。在这样的背景情况下,出现了以下几种基于上述理论的抑制NOB策略。(1)控制出水氨氮。Chandran的研究结果显示,NOB比AOB对氮基质亲和力更强。AOB与NOB在不同氮浓度时的生长速率见图3,从图中可以看出,在基质浓度较低时,NOB的生长速率要高于AOB的生长速率,因此通过维持出水氨氮在2 mg/L以上有助于使AOB的生长速率超过NOB。上述结论在奥地利Strass污水处理厂得到了验证,当时在冬季由于进水负荷的升高,出水氨氮有所升高,而此时NOB得到有效的抑制。(2)SRT控制。当温度高于17 ℃时,通过严格控制泥龄可以淘汰NOB,但是温度低于17 ℃时,NOB的生长速率开始超过AOB的生长速率,单纯采用SRT的控制方式难以起到效果。此时,严格控制泥龄这种方式与DO控制、瞬时缺氧联合控制时仍然会起到一定的效果。(3)DO控制。在基质不受限制的条件下,Chandran的研究结果显示NOB的生长速率低于AOB,进一步的研究结果显示AOB对氧的半饱和系数高于NOB,如图4所示。这样当DO浓度高于1 mg/L时对抑制NOB非常关键。在DC Water的小试及Strass污水处理厂生产性规模的试验都表明在低DO时NOB无法抑制,而当DO>1.5mg/L时NOB的抑制效应就会出现(4)瞬时缺氧。瞬时缺氧指的是在曝气状态下突然从好氧转为缺氧,瞬时缺氧目前被认为是抑制NOB的一种有效手段,这种方法背后的机理主要有两种解释:①曝气开始后酶的活动会有一个滞后的时间;②间歇曝气可能会扰乱生物代谢过程从而产生一些具有抑制性的中间产物,如一氧化氮。DC Water的研究结果显示,当DO间歇地从高于1.5 mg/L瞬时转为缺氧状态可以成功地抑制NOB。这一结论后来在HRSD及Strass污水处理厂都得到了验证。(5)进水COD控制。控制进水COD的负荷也是实现AOB生长速率最大化的一种方法,这种策略是建立在NOB和OHO对DO竞争的基础上。这种控制策略对进水COD类型和数量都有要求,因为它会影响到NOB的淘汰和AOB的活性。当进水COD较高时,OHO不仅会与NOB竞争,而且会与AOB竞争DO和空间。当AOB的活性降低时,氧化氨氮的曝气时间就需要延长,反硝化所需的COD就会减少。实际上,较为理想的进水COD组分是绝大多数都是溶解态的,这样一方面不会影响到AOB的活性,另外一方面又可供OHO反硝化,抑制NOB。所以,在主流厌氧氨氧化工艺中需要优化进水COD的分配。

淅川牛皮癣医院哪家好

鼎湖治疗牛皮癣专科医院

济南专治白癜风医院哪家好